Receiver outputs are dry relay contacts, like an SPDT switch. When the relay is in a de-energized state, the N/C (normally closed) contact is connected to C (common). When the relay is energized the N/O (normally open) contact is connected to C (common).

### Normally Open Application with Externally Supplied Voltage

<table>
<thead>
<tr>
<th>Relay 9</th>
<th>Relay 10</th>
<th>Relay 11</th>
<th>Relay 12</th>
<th>Relay 13</th>
<th>Relay 14</th>
<th>Relay 15</th>
<th>Relay 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

**Top Board Ter1**

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

<table>
<thead>
<tr>
<th>Relay 1</th>
<th>Relay 2</th>
<th>Relay 3</th>
<th>Relay 4</th>
<th>Relay 5</th>
<th>Relay 6</th>
<th>Relay 7</th>
<th>Relay 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

**Bottom Board Ter1**

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

**AC hot or DC+**

- Lamp, Motor, Solenoid, etc.
- Low current load (<5 amps)
- AC neutral or DC ground

**Load voltage**

- Lamp, Motor, Solenoid, etc.
- High current load (>5 Amps)
- AC neutral or DC ground

**Internal Relay - Loads Less Than 5 Amps**

Loads up to 5 Amps may be wired directly to the internal relays. Wiring to the N/O contact will cause the load to turn on when the relay is energized (the load is on when the relay is on). Wiring to the N/C contact will cause the load to turn on when the relay is de-energized (the load is on when the relay is off). AC or DC voltages can be switched through the relay.

**External Relay - Loads Over 5 Amps**

Loads over 5 Amps must use an external high current relay. Diagram shows how to turn on the relay using the lower current internal relay of the receiver. AC or DC voltages can be switched through the relay.

Note: A protection diode for DC coils or an MOV for AC coils is recommended to reduce inductive EMI noise.